Gene Selection using a High-Dimensional Regression Model with Microarrays in Cancer Prognostic Studies

نویسندگان

  • Shuhei Kaneko
  • Akihiro Hirakawa
  • Chikuma Hamada
چکیده

Mining of gene expression data to identify genes associated with patient survival is an ongoing problem in cancer prognostic studies using microarrays in order to use such genes to achieve more accurate prognoses. The least absolute shrinkage and selection operator (lasso) is often used for gene selection and parameter estimation in high-dimensional microarray data. The lasso shrinks some of the coefficients to zero, and the amount of shrinkage is determined by the tuning parameter, often determined by cross validation. The model determined by this cross validation contains many false positives whose coefficients are actually zero. We propose a method for estimating the false positive rate (FPR) for lasso estimates in a high-dimensional Cox model. We performed a simulation study to examine the precision of the FPR estimate by the proposed method. We applied the proposed method to real data and illustrated the identification of false positive genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data

Background: Response variables in most medical and health-related research have an ordinal nature. Conventional modeling methods assume predictor variables to be independent, and consider a large number of samples (n) compared to the number of covariates (p). Therefore, it is not possible to use conventional models for high dimensional genetic data in which p > n. The present study compared th...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

Prognostic factors of survival of patients with oesophageal cancer under radiotherapy using cox regression model

oesophageal cancer is one of the most fatal cancer in human in spite of high incidence in the north of Iran and poor prognosis,there is not information regarding prognostic factors in this area.this study was conducted to determine prognodtic factors of the survival of patients with oesophageal cancer under radiotherapy.We conducted a descriptive-analytical study using historical cohort that ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012